
IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE)  

e-ISSN: 2278-1676,p-ISSN: 2320-3331, Volume 11, Issue 5 Ver. III (Sep - Oct 2016), PP 80-84 

www.iosrjournals.org 

DOI: 10.9790/1676-1105038084                                           www.iosrjournals.org                                   80 | Page 

 

Inter-bases Conversion of Numbers without Long   Division 
 

Akpan, E. A.
*
, Itaketo, U. T. 

Department of Electrical/Electronic/Computer Engineering, University of UYO, Uyo, Nigeria 

 

Abstract: Source codes to run on application-specific integrated circuits (ASICs) platforms, field 

programmable gate arrays (FPGAs), and hardware drivers must be hardware-synthesizable codes. Further, 

these programs must have the capability to convert its outputs from one number base to another in order to 

build the interface to communicate with (human) users of digital hardware. The hardware synthesizable 

constraint forces these codes to be written using primitive operators such as multiplication, accumulation 

(summation), and bit manipulation rather than sophisticated mathematical functions. Unfortunately, a primary 

method of converting between number bases is successive or long division, also known as modulo arithmetic. 

However, division instruction requires tremendous computer resources such as clock cycles and registers. This 

article lays out a route to achieve number bases conversions while avoiding modulo arithmetic. The algorithms 

utilize multiplication, summation, and bit manipulation. The numbers are signed integers. 

Keywords: Conversion,  Digital, Binary, Numbers, Decimal, Integers 

 

I. Introduction 

Microprocessors are underpinned by binary arithmetic, whereas humans live in a decimal abode. 

Consequently, the quest for efficient number conversion formulations is ongoing. Down at the hardware level 

inside a microprocessor, all alphanumeric characters are represented as integers so that uppercase letter A is 30, 

lowercase letter z is 65, and the fixed-point numbers 1.56091 and -0.5955 may be represented as 799 and -2439, 

respectively. It follows that conversion of integers to different bases is foundational in microprocessor 

applications.  

To improve readability, some mathematical relations are introduced before hand as follows. Let 

,, yx and z  be integers. Then ),( yxremz   refers to the remainder following the integer division of x  by 

y  so that zyx   if yx  ; zyx   if yx  ; and 0z  if yx  . The notation )/( yxceilz   

means that z  is the smallest integer larger than yx / ; and  )/( yxfloorz   specifies z  to be the largest 

integer smaller than yx / . And the notation ‘ mod ’ stands for modulo. 

The notation BN  means a number N in base B  implying that  1671A  is the number A71  in base 16 ; 1022  

is a decimal number; and 2)1(  yx  identifies x  as a number in base two. The symbol ''  represents 

regular base-ten arithmetic addition; whereas, ''  denotes Boolean algebraic addition such that 

01100  , and  111110  . The symbol ~''  stands for one’s complement thus y~  is the 

one’s complement of y . All instances of the function log'' refers to logarithm; and the symbol ‘ ’ is the set 

inclusion symbol so that Ax  implies that x  is a member of the set A . 

For a vector 1v , the vector 
Tv1  is the transpose of the former. These notations will be used throughout the 

article. Further insights into number bases can be found in [1-8].  In the succeeding sections, conversion of 

positive integers from any base to base ten is given in section 2. Section 3 discusses the determination of the size 

of a number and register. An algorithm for converting from base ten to binary and other bases is given in section 

4. Signed number conversion is presented in section 5. Section 6 is the conclusion.  

 

II. Conversion of Positive Integers from any Base to Decimal 
Conversion of positive integers from any base to base ten is a vector multiplication. The rows and 

columns of the vectors must be conformable. Let B denote a number base. For binary, octal, and hexadecimal 

(HEX), B  is 2, 8, and 16, respectively. Also let BN  represent a number in base B , so that 

]...[ 011 bbbbN nnB    with the digits 10  Bbi , 0,1,...1,  nni ; 

 Tnn

B BBBP 1...21  . Then the decimal equivalent of BN  is 

BB PNN 10          (1) 



Inter-bases Conversion of Numbers without Long   Division 

DOI: 10.9790/1676-1105038084                                           www.iosrjournals.org                                   81 | Page 

where, ''  means dot product.  Using equation (1) it can be shown that  

 

35681016 211110024233122303432181871 A     (2)  

In the special case of base two,  Tnn

BP 12...22 21   and BN  is a binary string of zeros and ones.

  

III. Size of Numbers or Registers 
Any integer can be written as a quotient of two integers plus another integer known as a remainder. The 

size of an integer is the number of bits holding the integer. A key attribute of digital processors is their finite 

register length or finite precision. A number placed in a register must have its number of bits less than the 

register length in order to avoid overflow with the attendant loss of data. Consider an n-bit register containing a 

signed integer nY . Then,  

  122 11   n

n

n Y        (3)    

Suppose  
LL x 22 0  , nL 0 , then 

 
121

0

1 222   nnL

n

Ln Yx       (4)  

For unsigned integers,  

   120  n

nY         (5) 

 

The inequality in eqn. (4) asserts that doubling a number or shifting it left ( 1L ) increases its 

number of bits by one; tripling or quadrupling a number increases its bits by two; and squaring a number 

doubles its bit size. If inequality (4) is violated the resulting computation is gibberish. 

Let rK be the size of the register needed to store nY . By eqn. (5), the minimum register size for nY  is  

nYK 2min log          (6) 

The register size in eqn. (6) is insufficient for nY  if it is signed, because minK  has not accounted for the sign 

bit. To accommodate the sign bit minK  can be increased by one so that 1min  KK r . However, in 

application specific low level programs that access registers and manipulate bits it is desired that rK be in 

multiples of nibbles for easy conversion to hexadecimal (hex). Hence, rK  should satisfy these conditions: 

1) minKK r   

2) 04mod rK  

The following proposition gives a minimum register size which satisfies both conditions. 

 

THEOREM 1  

Let nY  be a signed integer and rK  its number of bits or size of register. Then the minimum value of rK  larger 

than nY2log  and also is a multiple of nibbles is given by  

4)4,(   remK r        (7) 

     where, )2log/(log 1010 nYceil .  

Proof:  

i)      nnn YYYceil 210101010 log2log/log)2log/(log  . For all nY ,   

}3,2,1,0{)4,(  remre    

      er rK 4 . 

ii)      To prove the second condition of the theorem the values of er  are considered one at a time. For the case 

0er :  

04mod      14N , for any integer 1N  



Inter-bases Conversion of Numbers without Long   Division 

DOI: 10.9790/1676-1105038084                                           www.iosrjournals.org                                   82 | Page 

)1(4 1  NK r . 

For the case 1er : 

14 2  N , for any integer 2N  

)1(4 2  NK r . 

For the case 2er : 

24 3  N , for any integer 3N  

)1(4 3  NK r . 

Finally, for the case 3er : 

34 4  N , for any integer 4N  

)1(4 4  NK r . 

Hence, for all nY , rK  is in multiples of nibbles ■ 

 

EXAMPLE: 

By eqn. (7), the following are 4-bit signed numbers: 

210 00011   ; 210 01117  . 

The following are 8-bit signed numbers: 

210 000010008  ;  210 0001011022  ;   210 01111111127  . 

 Finally, the following signed numbers require 12 bits: 

210 000000100000128  ;  210 1001110001101818   ● 

  

Conversion of Positive Integer from Decimal to Binary by the Method of Successive Comparison 

Conversion from any base to decimal is given by eqn. (1). This section takes a decimal number to 

binary. Conventional approaches in converting from base ten to binary (and other bases) is by  successive 

subtraction and successive or long division (modulo arithmetic).  

In successive subtraction, a decimal number N and a number ]...[ 011 bbbbb nn    in base B , having a 

decimal value M  are given. Then nb  to 0b  are found such that 0 MN .  Successive subtraction is a trial 

and error method and requires a great deal of ad-hoc trials which translates to slow algorithm.  

In the modulo arithmetic method:  

),mod(),( BNrq e          (8) 

where the quotient )/( BNfloorq   and the remainder BqNre   constitute the digits nb  to 0b . While 

modulo arithmetic (long division) is pedagogically popular, it does not lend itself to fast computer algorithm 

for two reasons. First, it incurs huge computing resources given the series of division involved, because division 

instruction, notably, takes a long time to execute [9]. Further, modulo arithmetic method requires additional step 

of gathering the bits (or digits) in reverse order since the least significant bit (digit) is computed first. The 

algorithm presented next for decimal to binary conversion removes these two bottlenecks.  

 

Algorithm for Decimal-to-Binary Conversion by the Method of Successive Comparison 

Let a decimal number 1y  be a positive n-bit integer. Consider a base vector  

  TnnP 12...22 21

2

        (9) 

and a vector  
011 ... bbbbv nnB     00...00 . That is, the initial value of  

Bv  is a zero vector, and the size of Bv  is given by eqn. (7). The conversion is as follows:  

Set 1nb  

If  12 yPvB  ,  0nb  

  Set 11 nb  



Inter-bases Conversion of Numbers without Long   Division 

DOI: 10.9790/1676-1105038084                                           www.iosrjournals.org                                   83 | Page 

  If  12 yPvB  ,  01 nb  

Continue for 2nb , 3nb , …, 1b , 0b  

The resulting Bv  is the binary representation of 1y . 

 

Conversion from Decimal to Other Bases without Long Division 

The successive comparison algorithm presented in the previous section is very general and extends 

straightforwardly to conversion from decimal to bases 3, 5, 6, 7, and 9. It is noted that conversion from hex, 

octal and base 4 to binary, and vice versa, is transparent and done by inspection. Thus, conversions among bases 

16 , 8 , and 4 utilize base 2  as intermediate step followed by grouping the bits in nibbles, threes, or twos for 

hex, octal, and base 4, respectively. And conversion from decimal to hex, octal, and base 4, without using the 

conventional method of modulo arithmetic, also uses base 2 as intermediate step followed by appropriate bit 

groupings.   

 

IV. Negative Integers and Two’s Complement Representation 
Digital circuits cannot tell the difference between negative and positive numbers in the manner humans 

do. Therefore, the former uses a principle known as two’s complement to accommodate numbers less than zero. 

The path to obtaining two’s complement depends on the base of the number. Suppose a signed integer y is 

represented as dy  and by  in bases ten and two, respectively. Let cy2  be the two’s complement of y . Then   

     1~2  bc yy           (10) 

    2]1[~  dy          (11) 

The base-two notation in eqn. (11) emphasizes that one’s complement operator only applies to base two 

variables. Equation (11) says that the two’s complement of dy  is the one’s complement of the binary 

representation of 1dy . Two’s complement is a negation of a number thus its basic use is in computing the 

difference of two numbers because cyxyx 2 .  

For instance, 1022dy  gives 10211dy . By equation (7) the number of bits 8rK ; and the binary 

representation of 1dy  is 00010101 . Hence, 10222 2211101010]00010101[~ cy . 

Accordingly, 1022dy  yields 10222 2200010110]11101001[~ cy .  

It is necessary to take a signed binary number back to decimal. The most significant (or leftmost) bit of a 

number is the sign bit. Let sbM  denote the most significant bit of by . If 0sbM , 0dy . The next result 

gives a formula for converting a negative binary number to decimal.  

 

THEOREM 2  

Given a signed binary number by  in two’s complement format and suppose the most significant bit of by  is 

non-zero. Then the decimal representation of by  is 

     1)(~ 2  Pyy bd         (12) 

where,   TnnP 12...22 21

2

     

 

Proof: 

 Let sbM  denote the most significant bit of by . Since 0sbM , the base ten number, dy , is negative. Hence,  

2)1(~ Pyy bd          (13) 

       )100(~ 22 PPyb        (14) 

           1)(~ 2  Pyb        ■        (15) 



Inter-bases Conversion of Numbers without Long   Division 

DOI: 10.9790/1676-1105038084                                           www.iosrjournals.org                                   84 | Page 

For application of theorem 2, if for instance, 200010110by , 0sbM , thus the base ten number is 

computed using eqn. (1). But if 211101010by , 1sbM . Then, 200010101~ by ;      

21~ 2 Pyb  ;  by eqn. (12), 22121 dy . 

  

V. Conclusion 

Digital electronics are useful to the extent that they can communicate with humans. Number 

conversions provide the link. Microprocessors interpret alphanumeric characters as radix two integers in various 

formats such as unsigned and signed one’s or two’s complement. At the core of this interpretation is bit 

manipulation which makes the latter an indispensable skill in computer programming. Bit manipulation finds 

applications in adding and multiplying numbers (content of registers); shifting numbers left or right; 

determining if a number is greater or less than zero; register re-sizing following multiply-accumulate operations; 

flipping selected bits of a register to achieve specific goals such as turning switches and LEDs on and off to 

energize or de-energize sensors and actuators. This article delineates number conversion amongst various bases 

while avoiding the cumbersome modulo arithmetic. The algorithms given in this article lend themselves to faster 

computer programs since number division and rearrangement of digits in reverse order are not involved. 

 

References 
[1]. J. Gallian, Contemporary Abstract Algebra, 8th edn., Brooks/Cole Cengage Learning, Boston, Massachusetts, 2013. 

[2]. D. Patterson and J. Hennessy, Computer Organization and Design, 4th edn., Morgan Kaufmann, Boston, Massachusetts, 2012. 
[3]. R.  Lyons, Understanding Digital Signal Processing, 2nd edn., Prentice Hall, New Jersey, 2004.  

[4]. H.  Deitel and P. Deitel, C++ How to Program, 3rd edn., Prentice Hall, New Jersey, 2001.  

[5]. T. Floyd, Digital Fundamentals, 7th edn., Prentice Hall, New Jersey, 2000. 
[6]. M. Mano, Computer System Architecture, 3rd edn., Prentice Hall, New Jersey, 1993. 

[7]. M. Mano, Digital Design, 2nd edn., Prentice Hall, New Jersey, 1991. 

[8]. D. Knuth: The Art of Programming, vol. 2, 1972.  
[9]. R. L. Gray, Macro Assembler Programming for the IBM PC and Compatibles, Maxwell Pergamon Publishing, Chicago, 1989. 

 


